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LOW VOLTAGE ELECTRON BEAM LITHOGRAPHY FEB8 1994,
Aaron Baum and R. Fabian Pease ' c .

In order to develop a low-energy-spread, high brightness electron
source using negative electron affinity technology, it is necessary to survey
the effects of cathode structure and activation on energy spread, lateral
velocity distribution, peak current, and lifetime. Most research in NEAPC
technology has gone into detector applications, to improve photoyield at low
light intensity and high wavelength. Intevac is a leader in this area. The
scientific understanding and technical expertise developed in this effort are
important to achieving our goal of an electron source optimized for low-
energy electron applications; however, it will be necessary to investigate other
cathode properties (peak brightness, energy spread) under a substantially
different operating regime (high light intensity, small emission area, high
extraction field).

To this end it is important to examine the operation of the
photocathode in detail; the best way to describe this is by tracking the life of an
electron, illustrated in Figure 1. We start with an electron in the valence
band (step 1), which is excited by an incoming photon into the conduction
band (step 2). The electron then relaxes, by optical phonon scattering (which
has a mean free path of about 300A), into ti:e conduction band minimum,
where the electron has a fairly long lifetime, which leads to a long diffusion

length (a few pm in a good photocathode). Thus electrons excited within a

few um of the surface have a high probability of reaching the surface. It
should be noted here that Intevac has developed the technology of a glass-
bonded thin film photocathode which can be used in transmission mode
(light entering from beneath the surface). Besides offering ruggedness and
simplicity of electron gun design, transmission mode NEAPCs offer lower
energy spread than the more commonly used reflection-mode NEAPCs. In
reflection mode, there are many more "hot" electrons — electrons which
haven't yet thermalized to the CMB — at the surface; in reflection mode
NEAPCs, many of these "hot" electrons escape, broadening the energy spread.

When the electrons reach- the surface, they encounter the band-bending
region, where they are accelerated toward the surface. Since the electrons are
“hot" in this region, they may interact with optical phonons here and lose (or
gain) energy (step 3). Thus their energy spread increases. Electrons with
energy above the vacuum level can then escape. The work-function-
lowering activation layer, by determining the vacuum leve], acts as an energy
filter, blocking the lower-energy electrons from escaping. : :
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There is another phenomenon at the surface that plays a potentially
important role in improving brightness of NEAPC sources. Because the
electrons have appreciably lower effective mass in the semiconductor than in-
vacuum (a ratio of 1:15 for GaAs), their semicondcutor quantum-mechanical
wavelength is much shorter. When the electrons are emitted into vacuum, -

.quantum-mechanical refraction takes place, and the electrons are focused into
a narrow forward cone. This is an excellent property for an electron source.

The activation layer also plays a role in determining emission
characterisitics. In the layer, electrons may scatter elastically, which would
degrade their angular distribution, or inelastically, which would degrade both
their angular and energy distributions. This consideration favors a thinner
activation layer.

To optimize the NEAPC source for low-energy eletron beam work, we
are examining the effect of activation layer thickness on both the lateral and
total energy spreads. One structure being examined is a GaAsP cathode
activated with only a monolayer of Cs. This type of NEAPC has not been fully
investigated as it has lower quantum efficiency and less sensitivity to long
wavelengths than currently used cathodes. However, the thin activating
layer should minimize scattering, improving brightness, and an extremely
low energy spread should be obtainable by adjusting the bandgap and using
the vacuum level as an energy filter. Other possibilities include activation
with F instead of O, which may provide thinner activation layers, and
increasing the doping near the surface. The latter modification would
decrease the width of the depletion region and thus improve the energy
spread of emitted electrons as they wi"! be less likely to scatter there.

Figure 2 shows a possible optimized photocathode structure. Like the
typical Intevac cathodes, this structure uses AlGaAs to block electrons from
diffusing too far from the surface; this design also incorporates a graded
bandgap to accelerate the electrons toward the surface. This action improves
the cathode's efficiency and decreases the cathode's response time (which is in
the tens of picoseconds even without this improvement). Also, since a small
source size is desireable from an electron optics standpoint, if the laser is
focused to a diffraction-limited spot in the active region, the graded bandgap
will reduce the diffusive spreading of the electrons before emission. To
further improve the source size and response time of the cathode, it is
designed to be thinner than an ordinary cathode, perhaps less than 1 micron.
The most important modifications, however, are near the surface. The
depletion region has been reduced by "spike doping,” — the last 100 A of the
cathode are doped as heavily as possible. Furthermore, a thin Cs-only
activation layer is employed. These modifications should greatly reduce
scattering in these two regions, improving energy spread and brightness.
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Currently we are examining the effect of activation on cathode
brightness. The experiments are carried out using photocathodes made using
Intevac's proprietary techniques sealed in tubes at UHV. Our first series of
measurements consists of measuring the lateral energy distributions of
electrons emitted from various photocathodes by monitoring the current

‘intercepted by a knife edge that is transported across the beam. The tube
design is shown in Figure 2. This apparatus affords the highest resolution
measurements of this type ever made on negative electron affinity devices. .-
Initial measurements have been made on photocathodes activated with the
standard Intevac nightvision activation, and show that, as expected, the
electrons have very low lateral velocities, corresponding to approximately
40meV on average. Tubes with GaAsP cathodes and Cs-only activations are
being fabricated.

Future experiments will involve measuring total energy spread,
lifetime, and peak brightness of a variety of cathode structures.
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Current Status of Compnter Models for Charged Particle
- Systems

Brent Boyer and R. F. W. Pease

Although there are many analytical methods available for analyzing charged particle systems, in
general they apply to geometrically simple lens systems. As a result, computer modeling has
emerged as a powerful tool for designing systems which will extract, focus, and analyze charged
particle beams. Personal computers are now nﬁaentlypowaﬁdmdecomnuoaltha.my
researcher can have access to the necessary computer resources. This has caused computer
modeling to become very popular. Here we summarize the main features of computer modeling
Jor charged particle systems. The topics covered include numerical techniques, source modeling,

lens design, deflector modeling, tolerances, space charge effects, and beam-target imteractions.

Introduction

Although the earlier textbooks on electron (and ion) optics antedated the widespread use of computers, the
use of computers for solving electron optical problems goes back at least four decades. During the early fifties
LicbmmnandhiseolluguuntheAElewchCenminmeUKemployedacombinaﬁonofmsimnc_enetwotk
analog computation and digital integration to solve for fields and published a series of papers that became the "bible’
for those designing axially symmetric electrostatic and magnetic lenses [1). Munro in 1970 described a series of
mfadoin;dnmclkumma'modem'digiuleompmerfarmorenpidlymdconvenimdy {2]. His
results bore out those of the AEI team almost exactly.
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For analyzing such lenses the first task is solve the Laplace equation according to the boundary conditions
set by the magnetic polepieces and their magneto-siatic potentials, and by the electrodes and their electric potentials.
For axial symmetry and with no polepieces o electrodes on axis (the usual arrangement) the propertics of the
solutions to the Laplace equation are such that it is possible to determine both first order properties (focal lengths,
principal plane positions and chromatic sberration coefficient) and third order propesties (¢.g. spherical aberration) of
memnmienmﬁmomyummmofmmwpomm V(0.2) and ©(0,2).

A worked example for a magnetic leas is shown below in the section on Lens Modeling using a series of programs
written by Munro. Munro's programs can also be used to determine the magnetostatic potential when the material in
the magnetic circuit approaches saturation.

The limitation of the above treatment is that it does not take into account higher order aberrations (5th order
and above) which may be significant for certain cases. To do a precise simulation of charged particle optics requires
determination of the fields everywhere, not just on-axis, and the particle trajectories are determined by numerical
integration of the corresponding equation of motion. The techniques for calculating fields - both on-axis and
everywhere - along with numerical ray tracing are discussed below in the section on Numerical Techniques.

Another issue in charged particle optics are those mutually repulsive forces that charged particles exert
between themselves. This effect is known as space charge and it has deleterious effects on beam quality.
Traditionally, the beam perveance, IV-32, was a parameter used to indicate how seriously space charge will affect the
beam quality. If the perveance was sufficiently low then the space charge effect was thought to be negligible. This
was the result from work done on vacuum tubes where the space charge was modeled as a continuum of charge
density; this model predicts that space charge acts as a diverging lens. In most electron beam lithography equipment
the values of perveance are such that this lens effect is negligible and so space charge was ignored until about 1970
in this application. However, it has since been established that in such equipment the occurence of random
interactions is sufficiently frequent to cause surprisingly large energy spread (the ‘Boersch effect’) and appreciable
trajectory bending [3]. Because of the random nature of these interactions this phenomenon is best treated using a
Monte Carlo technique in which the position and momentum of each of a finite population of particles is tracked as

the particles move down the column {4). A whole section below is devoted to modeling the space charge effect.

Electron sources for electron beam lithography equipment traditionally have been relatively simple
structures [5]. However point sources for both ions and electrons pose challenges for modelling because of the huge
disparity between the nm-scale geometries of the tips and the cm-scale geometries of the surrounding electrodes.
How this is presently tackled is described in the section on Source Modeling, but it is not clear that a satisfactory
approach yet exists.




Finally, the interaction of the beam with the solid target can be modeled as a continuous slowing down of
the particles that suffer scattering at random intervals at a mean frequency set by scatiering cross sections of the
incident particles in the target material, Such modelling has been the subject of countless papers since 1963 and a
brief description along with references to recent literature is given in the section on Beam-Target interactions. :

Numerical Techniques

With the exception of source modeling and space charge effects, much of the computing required for
Charged Particle sytems goes into determining electric and/or magnetic fields from boundary conditions such as
potentials on electrodes or current through coils. This section will briefly describe some of the numerical techniques
available for calculating these fields, and will conclude with a discussion of numerical ray tracing.

For a cylindrically symmetric system (no ¢ dependence), any potential (electric or scalar magnetic) will
have the following Taylor expansion since it satisfies the Laplace Equation [6):

P(r, z) = D(2) - %df'(z)r’ + E’;ﬁ"‘(z)r‘ - .. 1)

This says that the potential at any point (r, z) can be determined merely by knowing ®(r =0, z). So, in
principle. you do not need to explicitly compute the potentials everywhere; you only need to compute them along

the z-axis.

Although the above Taylor expansion will only be valid for small values of r, much useful information
may still be extracted. For example, the paraxial ray equation and third order aberration theory can be derived from it.
See the references in [7] for more details. In addition, a modified form of equation (1) is used when designing
deflectors, as will be discussed below.

It also may happen that one needs the full solution 1o the potential/field everywhere inside the system, not
just near the optical axis. This will be required, for instance, to do full ray tracing of particles down the column and
especially to do ray tracing near an electron gun. In this case, the full partial differential equation (Laplace's
equation) must be solved.
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Discussed below are the three most popular techniques for solving for potentials, either on-axis or
WMMM’MMM“&WMW@MMWMW
(FDM), and the finite element method (FEM).

. mmmzmwmsmmﬂyMismmqummm
@(r, ) for electrostatic problems. What one does is to break up the electrodes into smaller elements (e.g. an
annulus might be broken up into sections of rings) and then determine what charge deasity must be uniformly
distributed throughout each element in order to give rise to the prescribed potentials on all boundary elements. Here
is an example:

ol a3

Annulus atQ V

Annulusat5V

This determination of the charge density will involve solving a matrix equation. The potential at any point in space

due to a single element is then simply found by using the formula

¢i=-#€”fdv7" @

Note that the charge density p is uniform, so it may pulled out of the volume integral; typically the shapes used for
the boundary elements are such that analytic expressions exist for the remaining volume integral. The total potential
at any point in space is then the sum of the potentials from all elements. Consult the references in [8] for more

details.
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The finite difference method is very simpie to understand. Recall that the interpretation of the first
duivﬁgedamkuit,khdwedumﬁnumm If a curve ¢(x) is sampled at a finite
numbaofpoinu.uyapidofpoinneqmﬂywdbythcdimnceAx.thenwemighuppmxhnmdnﬁm
derivative of c(x) by :

de(x) c(a + Ax) - c(a) 3)
dx = Ax

Similarly, the second derivative may be approximated by

d? c(x) c(a + Ax) - 2c(a) + c(a - Ax) 4
—dTIx-- = Ax? )

Similar formulas hold for partial derivatives. Then any second order PDE with boundary conditions should be
solvable as follows: lay out a mesh of grid points with the appropriate dimeasionality (say a rectangular grid aligned
with the x and y axis for a 2D problem) and insist that the PDE (as expressed with the above approximations) be
satisfied at every interior mesh point, and the boundary conditions be satisfied at every boundary mesh point. This
will generate a set of simultaneous, linear, algebraic equations (i.c. a matrix equation) which can be solved yielding

the potential everywhere.

The finite element method is less intuitive. It turns out that solutions of PDEs are also solutions of an
associated variational problem. What is important is that finite element methods are similar to finite difference
methods in that one must specify a grid of points. One also must specify how the solution is assumed to vary over
a given mesh surface element; a first order FEM assumes the solution is piecewise linear while a second order
solution assumes the solution is piecewise quadratic. Finite element methods are more general than finite difference
methods (indeed, FDM can be shown to be a subcase of FEM). One consequence of this is that FEM can be easily
applied to nonrectangular meshes; triangular meshes are very common. This may be a large advantage in accuracy
when the boundary is very nonrectangular - triangular meshes can easily be chosen to have the boundary mesh sides
lie closely along the boundary [9]. Rectanguler meshes suffer in that their boundary mesh sides often weave through
a rough bondary instead of lie along it. In addition, FEM is the only way to handle saturated magnetic lenses.
Standard algorithms like Gaussian elimination may be completely inadequate for solving the huge matrix equation
generated by FEM (e.g. solving Poisson’s equation using second order FEM) . Workers in the field have now begun
to employ the incomplete Choleski conjugate gradient (ICCG) method [10) and report considerable success with it -
see [11] and [12].
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For more details conceming FDM and FEM, a modem reference is Hall and Porsching(13); consult pp.159-
183of!_hwkes[9]fortheq¥lieniouofduemahodswchuxedpuﬁdeopda. Other references to the application
of FEM for solving electrostatic fields may be found in [14).

To compare BEM with FEM for solving an electrostatic problem, note that with BEM you only break up
the electrodes into small pieces whereas with FEM the whole space is broken into grid elements. This means that
the size of the matrix equation which must be solved for a BEM solution is significantly smaller than that for FEM,
which is a significant advantage for the BEM method. On the other hand, with FEM, once you have solved the
matrix equation you have the solution for the potential everywhere whereas BEM only yields the charges on the
electrodes. To get the potential at a given point from a BEM solution you must add up the potentials due to the
charge on each boundary element; this may be a modest computation as the geometrical integral from equation (2)
may be, say, an elliptic integral if the boundary element is a ring (Reneau, [8]). So, if there are many boundary
elements or if you are ray tracing a sufficiently large number of particles, the FEM may be more economical. One -
exception may be ray tracing using the paraxial ray equation. In this case, since you only need the potential on-axis,
the BEM may be more economical.

Given the solution for the potential, one must still extract the fields if one desires to perform numerical ray
tracing. Since the field is the gradient of the potential, this means that you must have the spatial partial derivatives
of the potential. If a grid technique like FEM has been used, the potential is only known on the grid nodes which
means that an accurate method for smooth interpolation between nodes must be developed. Chapter 13 of Hawkes
[9] goes into detail describing some of the available methods; see also some of the references in [14]. Lunney er al
[15] have developed a new method based on multipole expansion which they claim is a superior alternative to
interpolation based schemes for computing the field.

Once the fields have been determined, an accurate method for ray tracing the particles must be employed. If
a cylindrically symmetric system is under consideration and one has solved for the axial field, then one may elect to

solve for the trajectories using the paraxial ray equation [7). For a magnetic lens system, the paraxial ray equation is

d’r(2) n 2y
o + v B(z)’r(z) = 0 (5)

L 4

where 1 is the charge to mass ratio and V, is the relativistically corrected beam voltage. It is just an ordinary
differential equation for the radial coordinate of the trajectory as a function of the axial coordinate, so the standard
methods such as Runge-Kutta or Predictor-Corrector may be employed to numerically solve it. See Press eral for a
good description of these techniques [16).




If the accuracy of the paraxial ray equation is insufficient, then more precise techniques must be employed.
Ouaxpwummyofny_ncingkwwudduahyhmemnﬁminmmwuﬁmneposiﬁon
of a particle given its present position:

Rt + At) = r(t) + r'(HAt + —r (AL + r ~(aL® + (6)
whe:epnmdenotedtffmmonmthmpecttothenmet va(t)nsdeﬁnedasthevelocltyand a(t) as the
acceleration, we can rewrite equation (6) as: .

r(t + At) = K(t) + v(t)At + %a(t)At2 + ga'(t)At’ + .. )
Making use of Newton's Second law (F = ma), we can express this as:

r(t + At) = r(t) + V(AL + z—f;F(r(t), HAL?

®
+ -én-[(v(t).V)F(r(t), t) + a—l“(—li(a:lg]m3 + ...

The force F for electromagnetic forces is
F(r(t), t) = q(E + vxB) )

and is in general a function both of particle position and time since E, v, and B in general depend on position and
time. From equation (8) you can trace the particles' trajectory by advancing the time in small increments At. This
is known as the power series method of ray tracing. The terms shown in equation (8) constitute a third order power
series method; it is common to drop the last term and do a second order method if less accuracy will suffice.

An alternative to the power series approach would be to numerically solve the differential equation for the

trajectory. This differential equation is just Newton's Second Law:

2
dd:?) = ;L—F(r(t). ) (10)

where F is again given by equation (9). It is simple to see that in rectangular coordinates, this equation breaks

down into three coupled ordinary differential equations. Then the standard techniques like Runge-Kutta or Predictor-
Corrector may be used to solve them [16]; see [17] as an example in the literature where this is applied to charged

particle rajectories.

A very accurate technique for tracking a particle's motion in a force field is the technique of Nystrom
integrators, developed in 1925 by Nystrom [18]. This technique is also very complicated which has hindered its
acceptance. Lear has exploited the capabilities of computers to ease the difficulty of implementing the method [19).
His application was actually the study of orbital motion, but perhaps there may be application in charged particle

optics.




Source Modeling _

. There are several issues involved in modeling charged particle sources. First, there must exist a good
physiwmociexforuiemwmm. For thermionic electron sources, the Richardson-Dushman equation with
Schottky's field enhancement correction has proven to be a good model. Field emission electron sources are
adequately modeled by the Fowler-Nordheim equation. A difficult source to model is liquid metal ion sources,
because the tip is not fixed but changes shape during the emission process in a manner which is hard to predict.

Once the appropriate model has been selected, a source modeling program needs to very accurately determine
the fields near the source. This is both because the emission process itself always strongly depends on the field
cotfiguration and also because the electrons will be ray traced upon emissionv. The most common candidates for
determining the fields are the grid methods (FDM or FEM). In a typical electron source, the emission area may be
as small as a few hundred angstoms while the extraction electrodes may be spaced millimeters away from the source.
This huge length scale difference means that a grid method for solving the fields cannot have constant grid spacing -
this would require too many elements to adequately model the source region. Thus, the grid must change scale from
small grid spacing near the source to large grid spacing near the eiecirodes. This is almost always far too tedious for
a human to specify the grid sizing by hand, so a good source modeling program should include a routine for
automatically generating a grid with adaptive length scales.

Lastly, it is usually vital to include space charge effects when modeling the emission process - the
repuision caused by electrons which have already been emitted can greatly affect the emission of additional electrons.
Furthermore, the presence of other electrons will modify the trajectories that would result if only ficlds from the
electrodes were present. See below for a whole section which is devoted to techniques for modeling space charge
effects.

One of the most comprehensive solutions to modeling electron sources is the program SOGUN reported by
Zhu and Munro {12). Their program can handle either thermionic or field emission guns. They use a 2nd order,
isoparametric FEM code to solve for the electric potential. The sides of the grid elements in this technique are not
lines but are quadratic curves - this enables the grid lines to almost perfectly conform to the boundary shapes (e.g.
curved cathodes and electrodes). The faci that this is a 2nd order method means that the potential can be solved with
higher accuracy. Once the potential has been solved for, the electric field needs to be extracted. This is one difficulty
with isoparametric grids, but Zhu and Munro report a new algorithm to do this. The commercial version of this
program, SOURCE, also includes automesh generation so that logarithmic changes in grid size - which is needed for
field emission guns - can be done by computer [20). Ray tracing is done by a third order power series method [21],
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and space charge effects are modeled by iteratively solving Poisson's equation as discussed below. The program is
Mbmhmb@mmmmmmdmmdbamm Sampie outputs
from Munro's software may be found on the next two pages, where they model a thermionic LaB, gun and a field

emission gun.

Other earlier work on modeling sources may be found in Weber [22], Herrmannsfeldt [23), Kang [24],and . -..
Renau [25]. Browning [26) has successfully employed the BEM. See Hawkes [27] for a discussion of an analytical
model for source region space charge effects. A reference to modeling liquid metal ion sources may be found in Cui
and Tong [28). Mohammed and Garcia [29) discuss automesh generation for electrostatic problems.
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Lens Modeling

wmhumwmmhmmdwmmm
early programs appearing over 20 years ago [2].

The common feature of almost all probe forming lenses, whether electrostatic or magnetostatic, is that they
have cylindrical symmetry. For example, a typical electrostatic lens consists of ring electrodes and a typical
magnetostatic lens is cylindrical current coils surrounded by high permeability materials which concentrate the
magnetic field across a small gap. This symmetry reduces a 3D field problem to a 2D problem.

The historical method of handling this problem is to consider a Taylor series exapansion of the potential
(Equation 1). This method requires knowledge of the potentials on-axis, which can be obtained by any of the means
described in the Numerical Techniques section. Once these have been obtained, the on-axis fields (electric or
magnetic) are easily determined and then the paraxial ray equation - an ordinary differential equation (see equation 5) -
must be numerically solved for certain trajectories (the "principal rays"). These trajectories are then used in
numerical integrations to obtain the aberration coefficients; important ones are spherical and chromatic aberrations.
These abermation coefficients are then used to predict lens performance. Chu and Munro [7] report on a program
capable of modeling both lenses and deflectors in this manner.

We give a worked example below of how to model the performance of a magnetic lens. This will give the
reader an idea of what computer modeling of charged particle optics involves. This particular example is taken from
a manual Munro has provided our lab [30].




The lens geometry we will coasider is shown on the next page, labeled as "Fig. 18b". The
first task will be to determine the axial magnetic field (also known as the flux density), using
~Mmm'spum'lmlml. Because of the symmetry of the lens, we need only solve over the
region AYZD; this region is shown in detail in "Fig. 19b". M11] expects that you have
divided the geometry into quadrilaterals, as shown in "Fig. 20b", in which edges of the pole
piece lie along edges of the quadrilaterals. You will need 10 tell M11 the exact Jocation of
these quadrilaterals. Furthermore, since M11 uses a FEM technique to solve for the magnetic
scalar potential everywhere inside AYZD, you will need to tell M11 what density of mesh
lines to use inside each quadrilateral. This is sketched out in "Fig. 21b": the numbers along
the lines YZ and ZD are the locations, in millimeters, of the corresponding quadrilateral
vertex; the numbers along the lines AD and AY label the mesh lines thru the quadrilateral
edges. The completed mesh is shown in "Fig. 22b". Now the steps outlined above are
something that you the user do on paper - the actual input data supplied to the computer, in
the form of a text file, is shown in "Table 1b". This is the format of "Table 1b": the first two
big blocks of numbers are the axial ("z") and radial ("r") coordinates of the quadrilateral
vertices; the numbers 1-7-12-22-27 and 1-5-10-15-20 on the top and left of these blocks are
the mesh line labels (compare with “Fig. 21b"). The next line of numbers, 1-22-5-15-1000
tells the location of the pole piece and its relative permeability. The final two columns of
numbers tell the boundary potential distribution (in ampturns). The output of this program is
the axial magnetic field, shown in "Table 2b".

Now that the axial magnetic field has been obtained, we may go on to examine the objective
properties of the lens. Munro's program M21 will calculate the excitation parameter and -
depending on the magnification condition - the object and/or image plane, the objective
principal plane, the objective focal length, the objective magnification, the spherical
‘aberration coefficient, the chromatic aberration coefficient, and the magnetic field at the object
and/or image plane. These are the main properties needed to predict lens performance. Along
with the data file containing the axial magnetic field, the user must also input to M21 the
initial beam voltage, the increment in beam voltage, the number of beam voltages, the
magnification condition (zero, low, high, or infinite), and possibly the position of the object
or image plane (if the magnication is either low or high). Examples of the output of M21 for
the lens of "Fig. 18b" are found in "Table 14" and "Table 15".
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‘0.000136
0.0002170
0.000517
0.000802
0.001223
0.001901
0.002966
0.00a4623
0.007154
0.010909
0.016231
0.023223
0.031372
0.039143
0.045156
0.049159
0.051377

-0.052081
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0.000097
0.00008a
0.000077
0.000073

- 0.000070
0.000068
0.000087
0.000066
' 0.000066




OBJECTIVE PROPERTIES OF
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POLE-PIECES OF FIG. 183
FOR ZERO MAGNIFICATION CONDITIONS
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VOLTAE PARAETER FLAE PLww LDGTE A b e

VOLTAGE
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15000.
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o & 0

15.01
11.18
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8.27
s.oo
a4.77
4.56
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4.23
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3.63
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(M)
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6.92
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22.59
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28.32
30.22
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35.9a
37.8a
9.7
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ZP(MM) FO(MM) CSI(MM) CCI(MM) (TESLAS)
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-1.64 6.3 - S$.% 4.54 0.0

-1.10 8.02 9.78 6.4 .0.016?
-0.80 2.79 15.90 8.10 0.0072
=-0.63 11.62. 24.63 $.88 0.0030
-0.51 13.87 36.4a 11.7M 0.0012

=0.43 15.33 S51.82 13.56 0.000%
-0.38  17.27  71.26 15.82 0.0002
=0.33 19,09 95.23 17.29 0.0000
=0.30 20.97 124.23 19.16 0.000%
-0.27 22,86 158.76 21.05 0.000}
=0.25 24.78 199.3%' .22.93 0.000}
-0.23  26.63 246.37 24.82 0.000%
=0.21  28.53 300.88 26.7) ©.000%
-0.19  30.42 2362.01 28.60 0.0001
=0.18  32.31 431.58 30.49 .0.000%
=0.17  34.21 S09.6a 32.38 0.0001
=0.16 36.10 S596.68 34.27 0.000%
=0.15  28.00 693.20 36.17 0.0001
=0.1a  39.89 799.70 38.06 0.0001

THE ABOVE RESULTS ARE FOR AN EXCITATION OF Nl = S00. AMPTURNS
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OBJECTIVE PROPERTIES OF

POLE-PIECES OF FIG. 188
FOR LOW MAGNIFICATION CONDITIONS

(THE ABERRATION COEFFICIENTS ARE REPERRED TO THE INMMGE SIDE)
RC BEAM EXCITATION

VOLTAGE PARAMETER
VR{VOLTS) NI/SORT{VR)
1000. 15.81
2000. 11.18
3000. 9.13
4000, 7.91
5000. 7.07
6000. 6.45
2000. 5.98
8000. 5.59
9000. -5.27
10000. 5.00
11000. 4,77
12000. 4,56
13000, 4,39
14000. 4.23
15000. /.08
16000. 3.95%
17000. 3.83
18000. 3.73
19000. 3.63
20000. 3.5
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7.25
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n.Nn
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18.45
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38.35
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0.072
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0.09a
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0.153
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CSI(M)
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‘3'3‘
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1059.17

1299.78

1583.48
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CHROM. FIELD AT

AB. Z1
CCI({MM) (TESLAS)
"3.45 0.0492
$.06 0.032s
6.85 0.0147
8.87 0.0058
11.05 - 0.0022
13.377 0.0008
15.82 0.0003
18.37 0.0001
21.05 0.0001
23.84 0.0001
26.75 0.0001
29.78 0.0001
32.94 0.0001
36.25 0.0001
39.69 0.0001"
43.28 0:0001
47.03 0.0000
50.94 0.0000-
55.03 0.0000
58.29 0.0000




As noted in the Introduction, the sbove technique of Taylor series expansion only handles third order effects
and this may result in poor accuracy for many situations. While the theory can be extended to higher orders, the
resulting equations are much more complicated so that an altemative technique is necessary. One such altemative
method of lens modeling is to give the lens design parameters (e.g. electrode shapes and potentials) to a program
which determines the fields everywhere in the lens. Direct ray tracing can then be used to sce how the electrons
travel. This easily yields characteristics such as optimal focal plane position and focal spot size with high accuracy.
The fields are determined by first solving for the potential, typically by either the FDM or FEM mesh methods. A
recent innovation is the use of the ICCG method for solving the associated matrix equation for FEM determination
of the potential; see Lencova and Lenc [11]. Lencova and Wisselink [31] also introduced automeshing capabilites for
their lens design program - although there is a less serious need for this capability in lens design as compared to
source modeling. Any good program for designing magnetic lenses should have the capability of handling magnetic

saturation effects.

A commercial software package which is capable of modeling charged particle lenses using this second
technique of direct ray tracing is the program OPTICS put out by Munro's company [20]. A typical example of the
capability of Munro's software is shown in the top picture, (a), on the next page. The near vertical lines are the
equipotentials between the two electrodes. The near horizontal lines are trajectories for electrons with different
starting heigths. The focal plane and spot size are easily determined from where the trajectories are most closely
crossed together. A plot of focal position vs. square of ray slope is on the bottom - note the fifth order effect which
the above third order theory would miss.

Examples of earlier work in computer modeling of electrostatic lenses may be found in the program
CIELAS by Hill and Smith [32] and the program ELOP-GELOP by van Oostrum [33].
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Deflector Modeling

MMuhmwwm;mMmmmwu&ummﬁmm e
by electrode or current coil srangements and then use electron ray tracing or aberration coefficients to predict the
performance. The main difference between deflectors and lenses is that deflectors never have cylindrical symmetry, so
determining the field distribution is a 3D problem. In principal, one could use, say, a 3D FEM program to solve for
the fields. In practice, 3D models are so much more demanding of computer time and memory capacity compared to
2D models that they have not yet been used for deflector design. Instead, approximate methods have been developed
to cope with the 3D problem.

It turns out that eiectrostatic deflectors, while lacking cylindrical symmetry, typically still possess some
degree of axial rotation symmetry. In particular, the most common electrostatic deflectors have invariance with
respect to rotations of either 90 or 45 degrees. In such a case, the 3D field distribution can be calculated via Fourier

expansion as a sum of harmonic terms:
O(r, 0, z) = Pi(r,z)cos(0) + P;(r, z)cos(30) + ...

= [-f 1(2)r + %f, (z)r3]cos(9) - f 3(z)r3cos(39) + .. an
(the rotational symmetry eliminates all even harmonic terms). The common approximation is to neglect the higher
order terms and only deal with terms shown in the equation above; this may be an inadequate approach for large angle
deflectors. Methods for calculating either the functions @, or the functions f) and f3 for both magnetic and
electrostatic deflectors are outlined in Munro and Chu [34]. These methods include invoking the Biot-Savart law for
magnetic deflectors if no ferromagnetic materials are present - otherwise a FEM code is run. Likewise, electrostatic
deflectors can be solved either by the BEM method or FEM. Lencova [35] reports a code for handling tapered

magnetic deflectors.

There are many lenses, such as multipole lenses, slit lenses, grid lenses, and concentric hemispherical
analysers which are not cylindrically symmetric. Multipole lenses, which are known to be capable of correcting
beam aberrations [36), can be modeled exactly like deflectors if they have the same symmetry properties; Smith and
Munro report a multipole/deflector program [37). The other types of lenses may be modeled in a manner similar to
equation (11), except that the lack of symmetry will mean that the even harmonic terms will need to be included.

Future trends for deflector modeling will probably be to increase the accuracy of the field calculations and to
model traveling wave deflectors.




Tolerances

-

A vital tool for charged particle optics design is a program which can calculate tolerances - the maximum
amount of mechanical imperfections which do not move the performance out of specification. Typical imperfections
are things like errors in machining or lens elements not being properly aligned.

The basis for all tolerance modeling programs is Sturrock's Principle [38]. Swurrock's Principle says that
the effect of moving a point P on an electrode by the vector 81 is equivalent o leaving the point unchanged but

changing the potential by 8@, = - V&, «3r,. This is really convenient: to model the effect of, say, a lens
being machined elliptical instead of cylindrical, one could actually model the lens as being cylindrical but now have a
changed boundary potential (via Sturrock’s principle). The fact that the boundary potential is no longer cylindrically
symmetric means that the same techniques developed for deflector design must now be invoked, namely Fourier
expansion as a sum of harmonic terms. Notethnmﬁkedeﬂectordesign.theevenhamonictumsﬁaybenonwo.
This will now give you an approximation for the axial potential ®(r = 0, z) which, when combined with a
unified lens/deflector aberration theory [7], allows you to compute the aberrations by numerically solving integrals.

Liu [39] and the references they cite describe a modern approach to lens and deflector tolerancing software.
Archard {40] is a useful reference to assist in understanding Sturrock’s original paper.

Space Charge Modeling

All charged particle optical systems suffer from space charge effects. This refers to the mutually repulsive
electric forces that similarly charged particies exert on each other [41]. Hence, a beam of electrons will actually have
different trajectories when going through a lens than those that would be predicted from ray tracing when only the
static fields from the lens are taken into account. These mutually repulsive forces have deleterious effects; the axial
components cause the beam energy spread to widen (the "Boersch effect”) and the radial components cause spatial
broadening; both degrade the focusing ability of the system.




With an estimate for the beam current deasity, a first order model for the effects of space charge is to
assume that the charge density is static and continuosly distributed over the column and then to solve for the new
fields in the system. For instance, to model space charge effects in an electrostatic lens in this manner, one would
be solving Poisson's equation instead of the simpler Laplace's equation (which is used when only electrodes are
considered). Fortunately, this only requires slight modification of the codes used in lens design.

One way to obtain an estimate for the current deasity is to calculate the fields with no charge assumed
present, trace the trajectories of a bunch of particles through this system (where the particles start out with random
positions, energies, and entry times - the randomness is a distribution obtained from some model), and then 10 use
these trajectories to estimate the charge density. Now one can solve Poisson's equation for a more accurate solution.
One could continue to iterate on the charge densities derived from successive solutions if desired. This is the method
used by Munro in his electron gun program to simulate space charge effects near the source. He has found that this
méthod converges to a solution in about 10 iterations (see p. 1866 of reference [12]). :

A more effective method to model space charge is by full Monte Carlo simulation. In such a simulation,
particles again are assigned random starting positions, energies, and entry times according to some distribution
model. Then direct ray tracing is performed, using both the static fields from the optical elements and the dynamic
electric fields generated by all the pair interactions. This method is appealing because it correlates with what is
happening physically as a particle beam moves down a column. There are effects predicted by these Monte Carlo
studies which the above first order models do not account for. In particular, when two real electrons make a close
approach they experience higher angle scattering than the scattering predicted from a continuum distribution. This
effect is known as residual stochastic Coulomb interactions. See Hawkes' book [42] for a brief discussion.

Numerically, there are two issues to be faced when implementing a Monte Carlo simulation. First, if there
are N charged particles in the column, then the number of pair interactions which must be calculated grows as N2,
This makes a full Monte Carlo simulation of space charge effects computationally expensive when many particles
are present (e.g. at high current levels). Unfortunately, this is precisely when you are most concerned about space
charge effects. Second, the accuracy of the numerical ray tracing method is highly dependant upon choosing small
time steps whcn two particles move close to each other. So, an appropriate algorithm must be employed to
dynamically adjust the time step. This is additional overhead and the smaller time steps required also slow the
program down. Other than these two considerations, a space charge modeling program is easy to implement as the

electric field from pairwise interaction of electrons is trivial to calculate (the electrostatic expression is '
E = ei/(ane,r’)).

In spite of the computational expense involved in a full Monte Carlo simulation, many people have

developed codes employing it. Munro's program COULOMB uses it {43]; his program can model Gaussian round-




besmn and square-shaped beam systems and the column may contais include thin lenses, drift spaces, and umiform
accelerating or retarding sections. Shimoyama [44) has appareatly doae a full Monte Cario investigation into. space
charge effcts in electron sources. Groves (45] and Sasaki [46] are amoag others who report full Monte Carlo
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(e.g. the hard scattering effects), there have been several sttempts at approximate Monte Carlo methods. One
approach is that of Allee [47), in which they restrict the number of pair interactions. Earlier work by Yau {48) had
mwmunmnnyofumhﬁmmommmmmmmumammm
interactions are considered. Allee incorporated a more sophisticated approach in which the size of this sphere
(actually a cube) is dynamically adjusted so that on average only a specified number of electrons are inside it. The
dynamic "sphere” adjustment is cleverly implemented so that only a few oompansons pes electron need be done.
They found that using only about 10 nearest neighbors gave results comparable to including all the pair interactions.
As a result of considering fewer interactions, the calculation time will grow as N'*, which is superior to the N
growth for a full Monte Carlo simulation.

Another possibility is the "Fast" Monte Carlo technique developed by Jansen [49], [50]. In this method,
the particles are given random initial positions and velocities just as in a full Monte Carlo simulation. The
difference is that the ray tracing is not done numerically but analytically: if one can assume that space charge
interactions only cause small deviations in trajectory, then analytic formulas can be derived to calculate these
deviations. These formulas may still require numerical methods to solve, but this turns out to be much quicker than
numerical ray tracing. Jansen claims a speedup factor of 10 to 100 times for his method. The assumption about
small deviations is not valid for all beam conditions - in particular, it becomes false for large beam currents.
Nevertheless, for small to medium beam currents, his method may provide the fastest way 1o get a good estimate for

space charge effects.

Special mention should be made here about space charge modeling for focused ion beam (FIB) systems.
FIB's are more prone to suffer from space charge effects than electron systems for two reasons. First, ions are many
thousands of times heavier than electrons, so for a given energy they move much slower. This means that to
achieve a given beam current, the density of ions must be much greater than the density of electrons in a beam with
the same current. Second, FIB's are typically operated at higher current levels than electron beams. Another way to
recognize the susceptibility of FIB systems to space charge is the fact that a tightly focused charged par;iclebeam is
not in equilibrium, so the longer time of flight means greater relaxation towards equilibrium; see [42] and [50). Two
workers who report on Monte Carlo codes for FIB systems are Narum [51] and Vijgen [52). Narum's code was
capable of implementing a dynamic sphere of influence to limit the number of particle interactions and dynamic time
steps while Vijgen's modeling used Jansen's "Fast” Monte Carlo programs.
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‘Beam-Target: Interactions | e

Understanding beam-target interactions is very important for electron microscopy aad electron/ion beam
lithography. For example, % quantify images or understand charging effiects in 2 Scansing Electron Microscope
(SEM) will require detailed knowledge of the emission of secoadary electrons [S5]. Modeling beam-target
interactions may be very important for lithographic applications where different parameters such as beam energy may
Mmmmamm o

An introduction to the physics of electron scattering and diffusion in solids can be found ir Reimer [56).
David C. Joy has published an excellent introduction to Monte Carlo electron scattering simulations [57). The
typical method makes several simplifying assumptions. First, it is assumed that elastic scattering can be separated |
from inelastic scattering; elastic scattering is assumed responsible for changing the direction of the electron trajectory
while inelastic scattering is assumed 1o only cause energy loss. Next, for elastic scattering, the solid lattice of atoms
is viewed as a collection of the individual atoms. Finally, the inelastic scattering is assumed to continuously drain
an electron of its energy at a rate given by the Bethe formula [58). The elastic scattering cross section used is the
screened Rutherford formula for an isolated atom; this formula predicts a mean free path which is used 10 determine
in a random fashion how long an electron will trave! until it next scatters. At its next scattering site, the scatter
mglewillnextbedeterminedandﬂlewholeptmwillherepundunﬁlﬂleehmnnnmsoutofenerxyduewthe
continuous inelastic scattering taking place between elastic scattering events. Several thousand computed trajectories
willyield:nuﬁnmewi&afewpumtmofmhchmﬁaiasehcmmﬁmdkﬂmemdw
deposition. Joy has made his programs freely available 1o the public [59). .

One big weakness of this approach is the use of the screened Rutherford elastic cross section formula. Itis
kno\wmhalmisfmmm:hslhniwdvdidity-inpuﬁcuhr.itisbadforeluﬁcmnuingoﬁofhavydanemsu
low enc:wics (below, say, 10 keV). Amwcmmahodofobniningﬂnelsﬁcmecﬁmkpuﬁdm
expnnsionmingmeMouscnmiugfomuh.buuhismdnodnquimsmexteasivecalwhﬁon(wvaalhomsof
supercomputer time) each time you want o use it {60). Browning [61) has determined an empirical expression
MWWWM&MmﬁmmrwawMgedemmmdmm This
mdbws&eﬁnfmﬂymmmMmmmﬁmmhmdhauwﬁalmt«Mmeﬁo
scatiering simulations.




. A more difficult area to accurately model is inelastic scattering. There are several important inclastic
scattering mechanisms like atomic inner shell ionization (X-ray and Auger electron generation; see [62]), scatiering
from both valence and conduction electrons, and collective phenomena such as plasmon excitations. These effects
may depend not only on atomic constituents, but also on crystal structure. There is a lack of accurate experimental
data in this field. David Joy has compiled a database containing all the published data he could find on electron
backscatter coefficients, secondary electron yield, stopping power, and X-ray ionization cross-sections [63]. A glance
at the data reveals rather astonishing discrepancies between the results reported by differeat authors and large gaps
between data points for many elements. The experiments done to gather this data are particularly difficult because
the experimental apparatus is effectively part of the sample; no one has yet done a complete analysis of how to
subtract this effect out [64). As a result of this, it is not at all uncommon to see researchers publish papers in
which, say, the forward and back scattered currents do not add up to 100% of the incident beam. In addition, the
experimentalists have been irresponsible by not fully reporting the sample characteristics. For example, it might
make a big difference in the data whether a carbon sample is amorphous, graphite, or diamond. The topography of
the sample also has a large effect on, say, secondary electron yield (trenches will act as Faraday cups) yet this is
another characteristic that may go unreported [64).

References to earlier work on Monte Carlo studies of electron scattering in solids may be found in [65);
references which focus on electron scattering as applied to electron beam lithography may be found in [66).

There is also interest in ion scattering in solids. People have done Monte Carlo studies of ion scattering in
solids, but the problem is much more challenging than electron scattering. The reasons for this include atom knock-
out effects (lattice atoms may get knocked out of their sites and in turn knock out other atoms causing a cascade
effect), crystal effects like channeling (ions may travel further along certain crystal orientations), and the fact that a
heavy enough ion dose will modify the characteristics of the sample (i.e. tun it amorphous). The people who are
concerned with modeling ion scattering in solids appear to be mainly interested in ion implantation processes for the

semiconductor industry; see the references in [67] for more details.

Future directions

As this paper has shown, existing programs model many topics in charged particle systems. However,
almost all of these programs exist in isolation so that one big feature would be the concatenation of many of the
existing programs into one easy 1o use program. For instance, while there are programs to handle space charge
effects, they are totally separate from those programs used in lens or deflector design while in reality you may want




to include space charge effects in the lens design stage. There is no one program which completely models an
ehcuoqhnmﬁmgnuaﬂ&cwthgbopﬁuldmundﬁmnyampkm.

An area that curreat computer modeling falls short in is optimization tools. Ideally, one should give an
approximate lens design t0 the computer and the computer would then casry out a search through parameter space to
uyudﬁndamopumlnlm At preseat, such software is limited. Munro has put out the programs LITHO
[68] and STIG [20), which performs optimization of stigmator and focusing systems, but the optimization is limited
to those parameters like electrode potentials and coil currents which do not require new field calculations. Other
researchers have investigated geometrical varistions in the lenses, but they use many approximations to evaluate lens
performance. Typical is van der Steen 2 al [69), Szilagyi and Szep [70], and Leaz [71] who solve for the axial
potential of a cylindrically symmetric lens using various approximations and then use the paraxial ray equation for
calculating trajectories. Kato and Tsuno [72) have attempted an optimization which modifies the geometrical shape
of the lens, but they limited their optimization to minimizing the spherical aberration coefficient. Vertes eral [73] -
discuss lens optimization for analytical instruments (¢.g. mass spectrometry); other work may be found in Olson and
Kusse [74), and Rayces and Lebich [75). The most difficult obstacle to overcome in finding a global optimization is
the prodigious amount of computing power required. One algorithm which has become popular for solving multi-
dimensional optimization problems is the simulated annealing algorithm; Forbes and Jones [76] discuss this method
as applied to lens optimization.

Lastly, although automated mesh generation programs exist (¢.g. the program SOGUN), they are typically
not fully autonomous. Instead, the user (who will have insight into the problem to be solved) must still instruct the
program where 10 put the heaviest concentration of grid lines. This may still be a tedious process. Furthermore,
there is probably always a need for more sophisticated numerical methods to get ever more accurate field calculations.
One technique that may relieve the user from guiding the mesh program while also being an accurate potential solver
is the use of adaptive grids. To illustrate, suppose you allow the computer to autonomously set up a coarse,
uniformly spaced grid and run an FEM code once to obtain a preliminary answer for the potentials. The computer
could look to find where the equipotential lines lie in this first solution and then completely readjust the grid so that
now the grid lines conform to the equipotential lines. This would automatically solve the problem of ensuring that
enough grid éiemems are present where the field is rapidly changing. A few iterations should converge to an
extremely accurate answer. Furthermore, there may be fundamental numerical accuracy benefits or new algorithms
that can be exploited if the grid lines are on approximate equipotentials.
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